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A SUPPLEMENT TO LAWDEN'S THEORY* 

S.T. ZAVALISHCHIN 

An extension of the mathematical model of the motion of a particle of 
variable mass in a central gravitational field is proposed, based on a 
discrete flow of the reactive mass and jump-type variation of the 
direction of the reactive force. The problem of programming the optimal 
orbital transitions is studied, in the case when, as distinct from /i, 
2/, the transit time is fixed. As a result, the possible pieces of 
optimal transitions, corresponding to impulsive, zero, and intermediate 
thrust, are described. It is shown that intermediate thrust generates 
motion along spirals which are not the same as Lawden's spiral. 

I. C~lizati~ of the equations of ~ti~ of a ~ticle of variable mass in a oent~l 
gmvitutio~l field, we know that the analogue of Meshcherskii's equation in the case of the 
plane motion of a particle of variable mass in a central gravitational field is 

r ' "  = / ( r ,  %)+m-*P c o s  8 ,  / =  _ ~ r - n  + ~ 2 ~  ( 1 . 1 )  

~" = r-=x, X" = r m - l P  s i n  O, m" = - -  c - 'P  

Here, r, ~ are the particle polar coordinates, X is the sectoral velocity, ~ is the 
gravitational constant, m is the mass of the particle, o is the specific impulse of the thrust 
P, and the angle 0 characterizes the direction of the reactive force (Fig.l). 

In the classical sense the operations of differentiation of Eqs.(l.l) are only meaningful 
for ordinary /3/ (e.g., piecewise continuous) programs P(.), e( ) However, some problems 
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concerning optimal interorbital transitions, have no solutions in the class of ordinary 
programs P (.). Their approximation by solvable problems shows /i/ that the approximate 
optimal programs P(.) have a tendency to reproduce the Dirac 6-impulse.. 

The assumption of impulsive thrust is only possible when the differentiation in the last 
of Eqs.(l.l) is interpreted in the sense of generalized function theory /3/. The result is 
that then, corresponding to the impulsive thrust, we have 3ump-type variation of the mass. 
This leads at once to the problem of multiplying the discontinuous function m-* by the 
impulsive thrust, and then, possibly, by the discontinuous program 0(.) Study of this problem 
has shown independent smooth approximation of the impulse, and the jump in its direction can 
lead to different tra3ectories. The reason for this indeterminacy is that system (i.i) does 
not have the Frobenius property /4, 5/. Thus, given independent choice of the programs for 
varying the impulsive thrust and its direction, we cannot expect the tra3ectory generated by 
them to be unique. Our device below for matching the program P(.). 8(.) leads to a unique 
and stable trajectory. 

We regard the pair {P (-), 0(.)} as matched if the thrust P = --cDm, running mass 
varies piecewise continuously, and for some piecewise continuous function o(.), the angle 
O(t) = o (s(t)), where s = cln m. Here, D denotes generalized differentiation. 

Note that a pair {P(.), 0 (.)) with piecewise continuous components is equivalent to a 
matched pair. It differs from the initial pair only in that, on the pieces where the thrust 
is zero, the direction of the thrust is constant. 

A matched pair is uniquely determined by the pair of programs {s(.), ~ (.)}: 

P = - - c D m ,  m = exp (~*s),  0 = o (s) (1.2) 

It can be shown that the equations of motion, generated by a matched pair, of a particle 
of variable mass in a central gravitational field, are 

r" = Y2 + w,  (s); Y2" = l  (r, X), ~ = Y4 + rw4 (s) 
~" = r-2x; Y4" = --r 'w4 (s) 

s(o) s (o) 
w , ( s ) =  I coso (~ )d~ ,  w 4 ( s ) =  t s m a ( ~ ) d ~  

s 

Y2 (0)  = r" (0) ,  y ,  (0)  = X (0) 

(~ .3)  

Here, the y, play an auxiliary role. 
Given the solution of system (1.3), we can indicate the parameters of the particle motion 

r, r" = Y2 + w2 (~, * ,  Z = ~ + rw4 (s) (1.4) 

that correspond £o programs (1.2) of variation of the thrust and its direction. 
Note the following: 
If the thrust varies piecewise-continuously, then system (i.i), (1.2) is equivalent to 

system (1.3). 
If the sequences of smooth programs {sk(.)}. {ak(.)} are convergent respectively to the 

programs s(.), o(.) at their points of continuity, then the sequence of trajectories (s = s~, 
~ ok) of system (i.i), (1.2) is convergent to the trajectory (1.4) at its points of con- 

tinuity. 
System (1.3) is equivalent to (i.i), (1.2) provided that the differentiation in the latter 

is generalized and we use the following rule for multiplying discontinuous by impulsive func- 
tions: 

cm-lP cos  o (s) = --Du'2 (s), c m - l p  sm ~ (s) = - - D w  4 (s) 

These relations hold in the usual sense for piecewise continuous thrust. Their right-hand 
sides are meaningful for impulsive thrust, and serve as a definition for the left-hand sides, 
which then become meaningless. 

Let us write the expressions for the increments of the radial and sectoral velocities due 
to jump-type variation of the mass: 

s(t+o) ¢(t+o) 
A r ' = - -  f c o s a ( ~ ) d ~ ,  A X = - r ( t )  l s ,n(~(~)d~ 

s(t-o) ,(t-o) 

AS = S (t + 0) - -  s ( t - -  0) = c In (m (t ÷ 0) (m ( t - -  0)) - l)  

Let the function o (s) be constant in the interval Is (t- 0), s (t-~ 0)]. 
analogue of Tsiolkovskii's formula: 

At" = - - A s  (t) cos cr (s (t)), AX = - - A s  (t) r (t) s m  cr (s (t)) 

We then have an 

(i 5) 



574 

Consequently, our approach corresponds to the treatment of /6, p.86/ of "the instantaneous 
e3ection of a finite mass seen as the idealization of a continuous ejection in an infinitely 
short time". 

2. The ~blem of optimizing interorbital flight in a fixed tizne, its fovmalization and 
~ d u c t i o n .  We consider the problem of dynamic optimization (/7/, p.86) (tp is a fixed 

instant) r( tv)-+max (2.1) 

under the dynamic relations (i.I). We assume that, at the start of the manoeuvre, r(0) = r 0' r" 
(0) = ~', X (0) = Xo, m(0) = m 0. At the final instant we must have 

r '( tp)  = rv', X(tv) = V ~ r ( t v )  + hX v, m ( t v ) =  m~ ~.2) 

If ~" = 0, AXv = 0, we are speaking of flight in a circular orbit of maximum radius. 
Let us formalize the problem. The optimal programs of variation of the thrust and its 

direction will be sought among the matched pairs. In this connection, we extend the dif- 
ferential relations (i.i), (1.2) to relations (1.3). 

The problem is now stated as follows. We need to obtain condition (2.1) in the class of 
peicewise-continuous non-increasing functions s(-) such that s(0) = cln mo, S(tv) = cln m v, and 
in the class of piecewise-continuous functions ff (.), defined in the interval [s(~),s(0)]. 

3. The ,ecessamy conditions for optimality. To solve our problem we use Lagrange's 
principle. We note that the third of Eqs.(l.3) can be ignored, since the particle angular 
position does not appear in the other equations, in the minimized functional, or in the bound- 
ary conditions (2.2). We thus form the Lagrange functional 

L = - -  r (tv) -1- ~,r" (tv) + ~4 (X (tp) - -  V "-~-~ (tv)) + (3 . t )  
t 

f (k, (y ,  + w~ - -  r') + k,  ([ - -  y,') - -  ~ (r'w 4 + y~')) d t  
o 

We next use integration by parts, introduce the Hamiltonian 

H = ( ~  - -  ~ w , )  r" + k d (3.2) 

use the last two relations and (1.3) to evaluate the variation 8L, and as usual, take as the 
Lagrange multipliers ~t the solution of the Cauchy problem for the conjugate system 

~'1" = - -  OH~Or, ~,, ( t v )  = - -  I + ~t 4 (w 4 ( s  ( t p ) )  - -  ~/~ l~ v ( r  ( tp ) )  -x )  

~2" = - -  OH~Or', ~2 (tv) = 1%, k4" = - -  OH/Ox, k4 (t~,) = ~4 
(3.3) 

Hence we have 

OH / Ow 2 = --~,', OH / Ow4 = --(~4r)" 

As a result, we obtain for the variation 6L; 

s(o) tp s(o) 
8L = I ((~,,r) (tv) cos (~ (~) - -  ~.~ (tp) s i n  o (~)) 8s  (~) d~ -}- I I (~'s" s in  o (~') - -  

S( tp )  0 S( tp )  
t p 

()~C)" cos ¢r (~)) 6o (~) dg d t +  ~ (~'2" cos o (s) + (kC)" s in  o (s)) 6s (t) dt 
0 

(3.4) 

(3.5) 

Recall that an admissible program s(.) is non-increasing. Let 0 = to, tl,..., t k = tp be a 
non-decreasing sequence of instants, at which the function s (.) has discontinuities. In the 
intervals (tl, t,+,) the function s(-) is continuous and not increasing. Its inverse s -1 (.) 
is likewise not increasing, but may have discontinuities, corresponding to pieces of zero 
thrust. We complete its definition at points of discontinuity by continuity on the left. 
In these circumstances we can change the order of integration in the second integral in (3.5). 
The result is 

8L = ~ I (~'2 (t,) s in  o (~) - -  (~.4 r) (t,) cos o (~)) 8c~ (~) d~ -4- 
~=0 s(t~-0) 

k-1 s(t~+0) 

~ ( - -3~2 ( s - t (~ ) ) s in (~ (~ )+( ;~C) ( s - l ( l ) ) coso ( ! ) )go (~ )d~+ 
~::=0 s (t~--O) 

(3.6) 
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tp  

I (k" cos o (s (t)) + (k,r)" sin o (s (t))) 6s (t) dt  
0 

We will now analyse the variation (3.6), which must be non-negative for admissible vari- 
ations 8s (.), 8o (.). It is natural to take the cases of impulsive, intermediate, and zero 
thrust. 

Impulsioe %h~st. In this case we must have 

X~ (t,) s i n ,  (~) "4- (X,r) (t,) cos o (~) = 0.  s (t, + 0) < .~ < s (t, - -  0) (3.7) 

The following main conclusion can be drawn from this: at the instants of discrete flow of 
the reactive mass, provided that ~2 (t,)k4 (tl)~= 0, the line of action of the thrust remains 
unchanged. The direction of the thrust may reverse any finite number of times. In the absence 
of a selfcompensation effect, we have by (1.5) for the increments of radial and sectoral 
velocity 

At" (t .)  = - -  As ( tJ  cos 0 (t,),  a x (t,) = - -  As (t.) r (t,) s m  0 (t,) (3 .8)  

P 

I t  i s  assumed he re  t h a t  O(t,) = o ( s ( t .  -f-0) q-0). 

S 

Fig.1 Fig.2 

Inte~diuVe th~st. This case corresponds to pieces of strict decrease of s(.). 
Analysis of the second term of (3.6) leads to the necessary condition 

~z (t) sin ~ (s (t))--(~,~ (t) cos ~ (s (t))=0 (3.9) 

We turn to the third integral term of (3.6). Using the needle-type variations shown in 
Fig.2, we can conclude that 

~," cos a (~ -~ (X,~" sin a (~ = 0. (3.t0) 

Eqs.(3.9) and (3.10) form a linear system in ~os o (~,sin o (~. 
zero. Successive integration gives the integral of system (1.3), 

~ 2  A- (X.~' = eonst 

Differentiation of (3.11) leads to the identities 

Its determinant is therefore 
(3.3) 

(3.tt) 

Q(s , t )  = x ~ a - X 4 r ~  = 0  
a = ~,1 q -  ~ ,4r - ly4 ,  fi = ~'4 r" - -  L2r-2X 

(3.t2) 
(3A3) 

From (3.12), using (3.9), we obtain the identities 

8Q/cgt  = 2 ~ r - ~ , 2  ~ - ~r-1~,4 2 -~- ¢x ~ q -  [5 2 = 0 

o~Q/cgt ~ = - - g v r - ~ , 2 c t  - -  6 v r - 4 r ' k 2  ~ -I- 9 v r - 4 x ~ 2 ~ 4  = 0 

(3A4) 
(3.t5) 

The last relation is equivalent to 

)~2 ( 3 r a  + 2r'~,~ - -  3)~,X ) = 0 (3.i6) 

If the second factor on the left-hand side of (3.16) vanishes in a time interval, then, 
recalling the definition (3.13), the second of Eqs. (3.3) can be written as 

~'2" = " /sr - l r '~ '2  (3.17) 

Solving this, we have 
~'2 = ~2 ( t , )  r-'/, ( t , )  r'/,, 0 < t ,  < tv (3.t8) 
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We can now claim that, in the case of intermediate thrust, the factor ~2 has no zeros. 
For, the presence of such a zero would imply, by (3.18), that ~2 is identically zero. 

Hence, by (3.9), we should have the identity ~acos0 (t)= u. and also, by (3.12), 14~= 0 i.e., 
14r = 0. By (3.14) we have ~r-~142= a: Thus, if ~.~ = 0, then also ~I : 0. which contradicts 
the boundary condition ~i (tp)~-I Hence Ii~ 0, so that cos 0 (t)= 0, r'--0 Thls obviously 
cannot correspond to a piece with non-zero thrust. 

Note that, in the present case, s,n0 (t)~&0 Otherwise, by (3.9), ~a = 0, and by (3.12), 
= ~i : 0 But then, by (3.14), (2~r-'-~ r-4X 2) ~2 ~ = 0, i.e., ~2 0, which contradicts 

our above conclusion. 

Put × = ctg 0. By (3.9), n = ~2(~r)-* Hence the derivative ×" = 12-112"n--(~r)'~-:× ~ 
Using (3.10) and (3.17) on the right-hand side of this expression, we obtain 

~" : ~ar-lr '~ (| ~. ~ )  (3. i9)  

Like (3.17), this can be solved in quadratures: 

×-~ + I = c ~ ' / , ,  c~ = (×-2 ( t , )  + 1~ f / ,  ( t , )  (3.20) 

We have thereby obtained the optimal slope of this line of intermediate thrust. Let us 
now find the value of the thrust. It is found from the condition that the particle move over 
the so-called singular surface, given by (3.14), (3.15). But we shall first write its equations 
in terms of u. Note that (see (3.13)) 

= f : ~  (×-*r" - -  ~1~) (3.21) 

Using (3.12) and (3.21), we transform (3.14) to 

r (t @ u ~) (r" - -  x f l x )  2 = ~ 2  ( t  - -  2× ~) (3.22) 

Incidentally, it follows at once from this that M is bounded: 

I x  I < i / 1 / 2  (3.23) 

Further, by (3.13), (3.12) and (3.21), we can obtain 

= × - ~  = r: ( × - ~ / - -  r-~x) × -~2  

Employing this expression in (3.16), we arrive at 

/ = 6× (3 + 2×~)-:X~ ' (3.24) 

We can use this equation to eliminate the radial velocity from (3.22), with the result 
that we obtain for the sectoral velocity on the singular surface: 

_ 3-~-2u s ] / ' i - - 2 u  z 
X= V ~Tg(x), g(~)-- 3--2~' V l+u' (3.25) 

It can be shown that motion over the singular surface is achieved under the action of the 
intermediate thrust 

p : 3mvr_~× 9--22n~--36ua- -40x a 
(3 - -  2x~) 3 (1 ÷ ×')% s ign  (s in 0 (t)) (3.26) 

Let us find the equation for the analogue of the Lawden spiral. The system consisting 
of the third equation of (1.3) and Eq.(3.24), has the integral (recalling (3.25)) 

arc tg  u -1 - -  3u-* = 4c1,  + c 2 (3.27) 

where c~ is an arbitrary constant, and the constant c I is given in (3.20). 
All in all, we have the system of Eqs. (3.20), (3.27), which describe in parametric form 

a spiral which differs from Lawden's /i/. Since the parameter ~ does not go beyond the 
bound (3.23), our spiral cannot, like Lawden's, turn around the centre of the gravitational 
field to infinity (see Fig.3, where the unshaded point corresponds to ~ = I / ~2). 

ZePo thl"ust in the ~nterua~ ( t , .  t**). By the definition of an admissible program of 
variation of the thrust line in this piece, a (s(t))- 0. = c0nst. The variation (see (3.6)) 

8L = ~ (~"  cos O, + (~4r)" s in  O,) 8s (t) dt  
t~ 

must be non-negative for any admissible variation 6s, and in particular, for the variations 
shown in Fig.4. For the left-hand variation, using integration by parts, we have 

8L = ~ ((E2 (T) - -  E2 ( t , ))  cos O, + ((~4r) (x) - -  (~4 r) (t ,))  s in  0 , )  >2 0 
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Similarly, using the right-hand variation, we can prove an inequality which is obtained 
from the last by replacing t. by t**. In all, we obtain the necessary conditions 

~,2 (t) cos O, + Q,4r) (t) s in  O, ~ ~,~ ( t , )  cos O, -}- Q,4r) ( t , )  s in  O, = 

~'2 (t**) cos O, -5 (X4r) (t**) s in  8 , , .  t ,  ~< t ~< t** 

(3.28) 

From the condition tht the length of the piece of zero thrust be independent, we can 
obtain, using (3.28), 

~., ( t , )  = ~,, (t**). (r~,,) ( t , )  = (r~,4) (t**) (3.29) 

Relations (3.29) imply in particular that the optimal direction of thrust at the start 
and end of the piece is the same. It can be assumed that the direction remains the same in 
the interval (t,, t,,). 

Let t~ be an instant of impulsive thrust. The increment of the Hamiltonian can be 
found from the relation 

H (t~ + O) - -  H ( t .  - -  0) = As (t.) (~,'(t~ ± 0)cos  0 (t.) + (~.,r)" (t. -4- 
0) sin 0 (t.)) 

constant on the optimal trajectory and can 
instants of the control process. 

~e can now conclude from the necessary conditions (3.28) that the Hamiltonian remains 
only have a discontinuity at the first and last 

Fig.3 

t~ 

Fig.4 

[ " - - U  , v.2 

Fig. 5 

The conjugate system (3.3) can be integrated in quadratures (ct are arbitrary constants) 

3. 2 = car" + c2a - l  (3tr" - -  2r + ¢or~/) 
r~'4 = g (rr') -1 ~', + c2X -1 (rr') - l  °Jr~/ + c3r 

= ~, ,w 4 ~-  (c~ - -  ~,s]) ( / ) - 1 ,  to = X ~ (a  X' + ~:~)-* 
(rr') ~ = at a -4- 2vr  - -  X 2 

Zone of i~puls~ve 8hec~ing on the singular 8u~f~ce. Suppose we are given the set (r, /, X) 
of the object motion parameters. It is required to find the direction x = ctg @ and the 
discrete mass flow Am for which the set (r,r'-- AscosS, X-- Asrsin 8) satisfies Eqs.(3.24), 
(3.25). We now obtain 

AS = (r sin 0 , )  -1 (X - -  g ~ , )  ~ ' - r )  

where x. is the root of the equation (see Fig.5) 
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/ 
r" 

i 
--X V(vr) -I × = x V I + x ~ -  = P (×) 

Shedding is possible if [r" ~rl~ n (% ~(~r)-*), where n is found from the condition 

that the line y = n--x X ~(~r)-* (shown broken in Fig.5) touches the curve y = p ~) (the 
heavy line in Fig.5). 

4. The case of G ci~c~Gr init~G~ G2~fi~GZ ophir. We will evaluate the Hamiltonian on 
the singular surface. By Eq.(3.17) and the first of (3.25), we have 

H = ~ ( / - -  ~ , r  -I (/)2), i = vr-~ ( ~  _ 1) < 0 

On the singular surface, therefore, the Hamiltonian does not vanish. If the control 
process duration is not fixed, we can add to the conclusion of Sect.3 the fact that the 
Hamiltonian is continuous at the instants 0, ~ Hence the optimal control program does not 
contain intermediate thrust. It consists of apsidal tangential impulses. If the interorbital 
transition time is fixed, our analysis shows that the hypothesis of /2/ about the absence of 
intermediate thrust in problems with variable angular range is equivalent for our present case 
to continuity of the Hamiltonian at the instant of reaching the given orbit. 
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ANALYTIC SOLUTIONS OF THE HAMILTON-JACOBI EQUATION OF AN IRREVERSIBLE SYSTEM 

IN THE NEIGHBOURHOOD OF A NON-DEGENERATE POTENTIAL ENERGY MAXIMUM m 

R.M. BULATOVICH 

The existence of analytic solutions for the Hamilton-Jacobi equations of 
an irreversible system with two degrees of freedom in the neighbourhood 
of a non-degenerate maximum of potential energy is investigated. It is 
shown that these solutions define manifolds in phase space which are 
filled with trajectories which asymptotically approach an equilibrium 
position as t ~4-~ . 

Consider a mechanical system with Lagrangian 

L: R 2 {x} × R '  { x ' } ~ R ,  L = T 2-}- T ~ - -  H 

r~ = ~/~<K (~ x', z'>, T, = <V (x), x'> 
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